

Current Transducer LT 1005-T/SP21

 $I_{PN} = 1000 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range @ ± 24 V Measuring resistance		1000 0 \pm 2000 $R_{M min}$ $R_{M max}$		A A
	with ± 15 V	@ ± 1000 A _{max}	0	27	Ω
		@ ± 1500 A _{max}	0	9	Ω
	with ± 24 V	@ ± 1000 A _{max}	5	60	Ω
		@ ± 2000 A _{max}	5	15	Ω
I _{SN}	Secondary nominal r.m.s. current		250		m A
K	Conversion ratio		1:400	0	
V _c	Supply voltage (± 5 %)		± 15 24		V
I _c	Current consumption		30 (@±2	24 V)+ I s	m A
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn				kV

Accuracy - Dynamic performance data

$oldsymbol{\epsilon}_{\scriptscriptstyle{L}}^{\scriptscriptstyle{G}}$	Overall accuracy @ $\mathbf{I}_{PN,}$ $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$ Linearity		± 0.4 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_o	- 35°C + 75°C	Typ ± 0.25	Max ± 0.50 ± 0.70	m A m A
t _r di/dt f	Response time 1) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs Α/μs kHz

General data

\mathbf{T}_{A}	Ambient operating temperature	- 35 + 75	°C
$T_{\rm s}$	Ambient storage temperature	- 45 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 75°C	26	Ω
m	Mass	1.2	kg
	Standards	EN 50155	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

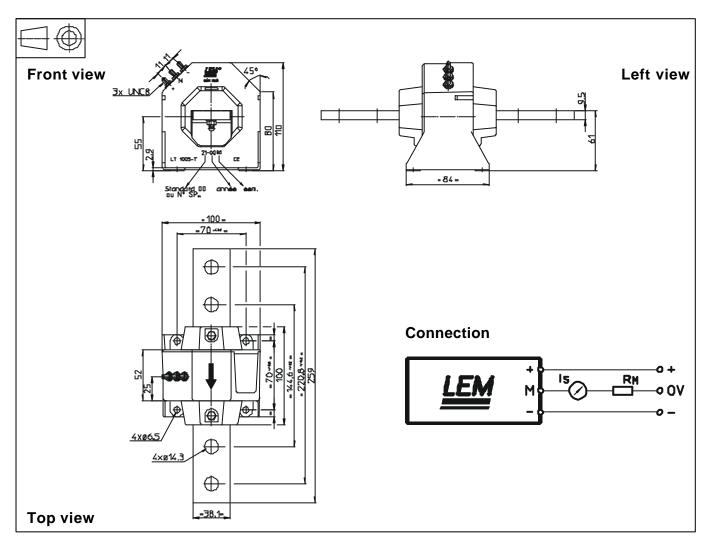
Special features

- $\mathbf{K}_{N} = 1:4000$
- $V_d = 12 kV$
- $T_A = -35^{\circ}C ... + 75^{\circ}C$
- Potted
- Connection to secondary circuit on UNC 8 threaded studs
- · Special primary bar
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

 \underline{Note} : $\,^{1)}$ With a di/dt of 100 A/µs.

070427/1

Dimensions LT 1005-T/SP21 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5 mm

ullet Transducer fastening 4 holes arnothing 6.5 mm

4 M6 steel screws

Fastening torque max 5 Nm or 3.65 Lb. - Ft

or

connection of primary
 2 holes Ø 14.3 mm
 Connection of secondary
 UNC 8 threaded studs

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.